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Abstract—Two systems of nonlinear partial differential equations 

are considered. Both systems are obtained at mathematical modeling 

of process of electromagnetic field penetration in the substance. In 

the quasistationary approximation, this process, taking into account 

of Joule law is described by nonlinear well known system of Maxwell 

equations. Taking into account heat conductivity of the medium and 

again the Joule law, the different type nonlinear system of partial 

differential equations is obtained. Investigation and approximate 

solution of the initial-boundary value problems are studied for these 

type models. Linear stability of the stationary solution is studied. 

Blow-up is fixed. Special attention is paid to construction of discrete 

analogs, corresponding to one-dimensional models as well as to 

construction, analysis and computer realization of decomposition 

algorithms with respect to physical processes for the second system. 

Averaged additive semi-discrete models, finite difference schemes are 

constructed and theorems of convergence are given. 

 

Keywords—Nonlinear differential equations, blow-up, stationary 

solution, linear stability, Hoph bifurcation, averaged additive semi-

discrete models, finite difference 

I. INTRODUCTION 

N mathematical modeling of many natural processes 

nonlinear nonstationary differential models are received 

very often. One such model is obtained at mathematical 

modeling of process of electromagnetic field penetration in the 

substance. In the quasistationary case the corresponding 

system of Maxwell equations has the form [18]: 

 ,rotHvrot
t

H
m




      ,

2
rotHv

t
m




 (1) 

where  321 ,, HHHH   is a vector of the magnetic field, 

  is temperature, mv characterizes the electro-conductivity of 

the substance. The first vector equation of system (1) describes 

the process of diffusion of the magnetic field and the second 

equation describes the change of the temperature at the 

expense of Joule heating.  

For a more thorough description of electromagnetic field 

propagation in the medium, it is desirable to take into 

consideration different physical effects, first of all heat 
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conductivity of the medium has to be taken into consideration. 

In this case, the same process is described by the following 

system: 

 ,rotHvrot
t

H
m




     

   ,2



kgraddivrotHv

t
m 




 

(2) 

where k  is coefficient of heat conductivity. As a rule this 

coefficient is function of argument   as well.  

Many other processes are described by the (1) and (2) type 

systems and many works are dedicated to the investigation and 

numerical resolution of the initial-boundary value problems for 

these type models (see, for example, [1]-[17], [20]-[23], and 

references therein).  

There are still many open questions in this direction. We 

study some properties of solutions of different kind of initial-

boundary value problems for investigated systems, as well as 

numerical solution of those problems. Many authors are 

studying convergence of semi-discrete analogs and finite-

difference schemes for the models described here and for the 

problems similar to them.  

Some generalization of one-dimensional system of nonlinear 

partial differential equations based on Maxwell model is 

considered. Initial-boundary value problem with mixed type 

boundary conditions is discussed. It is proved that in some 

cases of nonlinearity there exists critical value c  of the 

boundary data such that for c 0  the steady state 

solution of the studied problem is linearly stable, while for 

c   is unstable. It is shown that as c  passes through 

c  then the Hopf type bifurcation may take place.  

We compare theoretical results to numerical ones. Special 

attention is paid to construction of discrete analogs, 

corresponding to one-dimensional models as well as to 

construction, analysis and computer realization of 

decomposition algorithms with respect to physical processes 

for the second system. The above-mentioned decomposition is 

defined by splitting this model in two parts: in the first part the 

Joule heat release is taken into account and in the second - part 

the heat conductivity of the medium is considered. Semi-

discrete averaged additive models, finite difference schemes 

are constructed and theorems of convergence are given. 
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Investigation and approximate solution of the initial-boundary 

value problems posed for these systems are the actual sphere 

of contemporary mathematical physics and numerical analysis.  

Note that, system (1) can be reduced to integro-differential 

form. Many works were published in this direction (see, for 

example, [16] and references therein).  

Our aim is to study some properties of solutions of the 

initial-boundary value problems for one-dimensional variants 

of (1) and (2) type systems. Blow-up solution is constructed. 

Linear stability of the stationary solution is studied and Hoph 

bifurcation phenomena is fixed. The finite difference scheme 

are constructed for investigated problem. The additive 

schemes for one-dimensional analog of system (2) with one-

component magnetic field are given as well.  

II.  BLOW-UP AND STABILITY OF SOLUTIONS 

In the cylinder     ,01,0  let us consider the following 

initial-boundary value problem:  

,





















x

U
V

xt

U 
    ,

2



















x

U
V

t

V 
 

  ,0,0 tU     ,0,1 tU  

   ,0, 0 xUxU       ,00, 00  vxVxV  

(3) 

where  0U  and  0V are known functions defined on  1,0  and 

  and 0v  are constants.  

It is not difficult to verify that if 1  and   00 vxV   

then the following functions: 

  ,, xtxU   

       
  1

1
21

0 1, tvtxV  

(4) 

are solutions of the problem (3). But if 1  in the finite 

time  121

00    t  the function  txV ,  becomes 

infinity. This example shows that solution of problem (3) with 

smooth initial and boundary conditions can be blown up in the 

finite time.  

Let us consider the following system:  

,





















x

U
V

xt

U 
     

2

22

x

U

x

U
V

t

V





















 
 

(5) 

Many facts that obtained for (3) problem are valid for (5) 

too. In particular, functions  txU ,  and  txV ,  defined by 

(4) satisfy the system (5). From this one can deduce that for 

system (5), analogical to (3) problem, adding the following 

boundary conditions: 

   
,0

,,

10











 xx t

txV

t

txV
 

if 1  the theorem of global solvability does not take place.  

Main part of this paragraph deals with a nonlinear model 

which is obtained after adding of two terms to the second 

equation of Maxwell one-dimensional system (1).  

In the cylinder     ,01,0  let us consider the following 

problem [14]:  

,





















x

U
V

xt

U 
     

,

2

x

U
cV

x

U
bVaV

t

V





















 
 

(6) 

  ,0,0 tU   ,
1

 




xx

U
V  (7) 

   ,0, 0 xUxU      .0, 0 xVxV   (8) 

Here, likewise above  and  are time and space variables 

respectively,   ,,txUU    ,,txVV   are unknown 

functions, 00 ,VU  are given functions,  ,,,,,, cba  

known positive parameters.  

It is easy to check that the unique stationary solution of 

problem (6) - (8) is: 

  ,
2

2 x
a

c

a

b
xU s 

















  

  ,
2

1

2















a

c

a

b
xV s  

Introducing a designation ,
x

U
VW




 

 after simple 

transformations, we get: 










2

2

x

W
V

t

W 
 

  ,122121 WWcVWbVaVa   
     

,222 WcVWbVaV
t

V   



 

(9) 

,0
0






xx

W
    ,,1 xW  (10) 

 
 

,0, 0

0
x

xU
VxW




 

    .0, 0 xVxV   (11) 

The unique stationary solution of problem (9) - (11) is: 

  ,xxW s     .
2

1

2















a

c

a

b
xV s  

Let  

      ,, 1

t

s exWxWtxW   

      ., 1

t

s exVxVtxV   
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We examine the linear stability of problem (9) - (11) by 

linearizing (9) about the stationary solution  ., ss VW  After 

some transformations we have:  

















2

1

2
2

2

1
x

W

a

c

a

b
W





  




























2

1

2

a

c

a

b
a  
























1

2

12

22 W
a

c

a

b
b





  

  ,2 1

2

2

2 V
a

c

a

b
a


















  

  




























1

2

1

22 V
a

c

a

b
a





  

  ,2 1

2

2

2 W
a

c

a

b
cb


















  

,01

2

2

1

2

 W
dx

Wd
      

  ,01
0

1 


W
dx

dW

x

 

(12) 

 

where  

 




























2

1

22

a

c

a

b
a  





























2

13

22

a

c

a

b
b  

  



















2

23

222
a

c

a

b
cba  

  































1

2

1

22





a

c

a

b
a  

.
2

2



















a

c

a

b
 

It is not difficult to show that problem (12) has nontrivial 

solutions if and only if 

,
2

1 2

2

22  







 nn   .0Zn  

For corresponding n  we have: 

   nnn cbaP  ,,,,,,2
     

  0,,,,,, cbaLn  , 
(13) 

where  

 cbaPn ,,,,,,       




















 




2

22

2

2

1

a

c

a

b
n  

  


















2

1

2

a

c

a

b
a  

,
2

12

2



















a

c

a

b
b  

 cbaLn ,,,,,,   









 2

2

2

1
na  

  


















2

1

22
a

c

a

b
 

 

 



























2

12

22
a

c

a

b
aa  

.
2

13

22



























a

c

a

b
b  

(14) 

 

Let us note that the stationary solution  ss VW ,  of the 

problem (9) - (11) is linearly stabile if and only if 

  ,0Re n  for all n  and unstable if there is an integer m   

such that   .0Re m  From (13), (14) it can be deduced the 

following statement. 

Theorem 1. If ,02    then stationary solution 

 ss VW ,  of problem (9) - (11) is linearly stable if and only if 

  ,0,,,,,, cbaPn   for all ,n  i.e. if and only if 

  



















1

2

a

c

a

b
a  
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<
2

2

13

22 




















a

c

a

b
b  

    We examined the stability of the steady state solution which 

depends on a boundary condition 0 . For a sufficiently 

small values of   the steady state solution is linearly stable. 

But as   passes through a critical value, the stability changes 

and a Hopf bifurcation may takes place [19]. 

    Global exponential stabilization of solution is also proved 

[12] for problem (6) - (8) in case 1 ba , 

0 c . 

III. DIFFERENCE SCHEMES AND SEMI-DISCRETE SPLITTING 

WITH RESPECT PHYSICAL PROCESSES 

    At the beginning, let us consider first type initial-boundary 

value problem for the following model system:  

).(=,0)(),(=,0)(

0,=)(1,=)(0,

,=,=

00

2

xVxVxUxU

tUtU
x

U

t

V

x

U
V

xt

U





































     
(15) 

 

    The semi-discrete and finite difference second order 

accuracy schemes with respect of space step is constructed and 

studied in [7] for this case of nonlinearity. In [9] more general 

finite difference schemes including second order accuracy two-

level scheme and tree-level type scheme are also studied. 

    Let us introduce the grids: 

,=,=    

hhhh  

where:  

 ,0,1,...,=,== Njjt j   

},1/=,0,1,...,=,={= MhMiihxih
 

},,{\= 0 Mhh xx
 

}.1,2,...,=,1/2)(={= Mihixih 
 

    Let us introduce also scalar-products, norms and well 

known notations:  

,=],(,=),(
1=

1

1=

hzyzyhzyzy ii

M

i

ii

M

i




 

,],(=],),(= 1/21/2 yyyyyy  

,=,= 11

h

yy
y

h

yy
y ii

x
ii

x
 

 

,
2

=,=
2

111



  jjj

tt

jj

t

yyy
y

yy
y  

jj yyy )(1= 1)(    

and consider the following finite-difference scheme:  

    ,=,=
2)()()(   xtttxxttt uvvuvuu   

0,=)(1,=)(0, tutu  

),(=,0)(),(=,0)( 00 xVxvxUxu  

  ,)(=),(
0=0 txxVUxUxu    

      .)(=),(
0=

2

0
t

xUxVxv    

(16) 

In the (16) discrete function u  is defined on h
 and v  is 

defined on 


h . 

The following statement takes place [9]. 

Theorem 2. If 00.5    and problem (15) has 

sufficiently smooth solution, then finite difference scheme (16) 

converges as 0 , 0h , and the following estimate is 

true  

2 2= ( ( 0,5 ) )j j j jU u V v O h           

    It is clear that from Theorem 2 we get following result: If 

0.5= , 0=  or 1= , 0.5=  then convergence is 

the second order  22 hO  . 

    Investigation of splitting along the physical processes in 

one-dimensional case is the natural beginning of studding for 

(2) type systems. In this direction the first step was made in the 

work [1]. 

    Now in the domain ][0,T  let us consider the following 

problem for (5) nonlinear one-dimensional parabolic system: 
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     (17) 

where 1/21/2   , 0  and [0,1]=  with 

boundary  . 

    If we denote 
1 2 =V W ,  =2 , then problem (17) can 

be rewritten in the following equivalent form [1]: 
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    Let us use well known notations:  
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and correspond following additive averaged semi-discrete 

scheme to the initial-boundary value problem (18):  
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where  

1 1 2 2= ,w w w   

0,>0,>1,= 2121    

with suitable boundary conditions. 

The following statement takes place. 

Theorem 3. If 11    and problem (18) has a 

sufficiently smooth solution, then the solution of the additive 

averaged semi-discrete scheme (19) converges to the solution 

of problem (18) as 0 , and the following estimate is true  

 1 2( ) ( ) = .j j

j jU t u W t w O     

Here   is an usual norm of the space (0,1)2L . 

    Let us also correspond to the problem (18) the following 

semi-discrete additive model:  
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with suitable boundary conditions, where  

.=,= 22112211 wwwuuu    

    One must note that the analogous result as Theorem 3 is 

valid for scheme (20). 

    Note also that result of Theorem 3 and result analogical to it 

with Dirichlet boundary conditions for function V  in problem 

(17) is obtained in the work [1]. 

    Now let us consider the fully discrete finite difference 

schemes for the problem (18). 

First of all let us consider difference scheme analogical to 

scheme studied in [1]: 
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with suitable initial and boundary conditions. Here 

),(= 1/21/2 ji

j

i txww  , ),(= 3/23/2 ji

j

i txww  . 

    Following statement shows how well the scheme (21) 

approximates the initial-boundary value problem (18). 

Theorem 4. If 11    and problem (18) has a 

sufficiently smooth solution, then the solution of the finite 

difference scheme (21) converges to the solution of problem 

(18) as 0 , 0h , and the following estimate is true  

 2= .j j j jU u W w O h     

In [20] for problem (17) following difference scheme is 

considered: 
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where ),(= 1/21/2 ji

j

i txvv  , 1v  and 1Mv  are the values at 

the ghost points. 

IV. CONCLUSION 

Various numerical experiments using above mentioned 

discrete models (16), (19) - (22) are carried out. These 
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experiments agree with theoretical investigations 
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